Malitha Gunawardhana

J (+64) 212-877-840 ■malithagunawardhana96@gmail.com imlinkedin.com/in/malitha-gunawardhana Ogithub.com/Malitha123

😵 scholar.google.com/malitha-gunawardhana

SUMMARY

- Machine learning and software engineer with over six years of experience in artificial intelligence, deep learning, computer vision, and software development, delivering high-performance AI-driven solutions.
- Extensive experience working across Sri Lanka, Poland, Germany, and the UAE, leading cross-functional teams to design and deploy scalable AI architectures for real-world applications.
- Expertise in developing and optimizing deep learning models, addressing model uncertainty, and leveraging generative AI and large language models (LLMs) to bridge the gap between research and practical implementation.

Education

University of Auckland	Auckland, New Zealand
Doctor of Philosophy	$Dec. \ 2023 - Dec. \ 2026$
• Thesis:- Deep learning powered analysis to aid structure-targeted therapy for atrial fibri	llation
• Award:- Health Research Council Scholarship	
• Teaching Assistant - ENGSCI 313: Mathematical Modelling	
University of Moratuwa	Moratuwa, Sri Lanka
B.Sc. Engineering Honours Degree Specialized in Biomedical Engineering	Jan. 2017 – July 2021
• Dean's list placement in Semester 7	
• Key Modules: Image Processing and Machine Vision, Neural Networks and Fuzzy Logic, Differential Equations, Statistics, Graph Theory, Medical Imaging, Signal Processing.	, Calculus, Linear Algebra,
Spring and Summer Schools	
• CCAIM AI and Machine Learning Summer School	Sept. 2023
• Deep Learning Medical Imaging School, Lyon - France	April 2023
• BCI & Neurotechnology Spring School 2023	April 2023
MOOCs	
Oracle Cloud Infrastructure 2024 Generative AI Certified Professional	
• Large Language Model Agents (UC Berkeley)	
• Deep learning Specialization by DeepLearning.AI (Coursera)	
• TensorFlow Developer Specialization by DeepLearning.AI (Coursera)	
• Data Science Career Track by 365 Data Science	
• Microsoft Certified Azure Fundamentals by MS Learn	
• Programming with GoLang specialization by Coursera	

EXPERIENCE

Machine Learning Engineer	Sep. $2022 - Jan. 2025$
Institute of Fundamental Technological Research Polish Academy of Science (IPPT-PAN)	Warsaw, Poland
• Achieved state-of-the-art (SOTA) results in tumour detection classification and se	agmentation using

- Achieved state-of-the-art (SOTA) results in tumour detection, classification, and segmentation using ultrasound imaging, with performance metrics including a Dice Similarity Coefficient exceeding 85%.
- Took the lead in designing, developing, and optimizing machine learning algorithms tailored for breast cancer detection and segmentation as part of the **INFOSTRATEG project**, aimed at developing "A supporting system for diagnosis of breast cancer lesions using ultrasonography and machine learning"

Sep. 2022 – Sep. 2023

Abu Dhabi, UAE

Artificial Intelligence Research Assistant

Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

- Led a team of two researchers to develop a **self-supervised learning benchmark** for the spontaneous acquisition of infant-level perceptual understanding using **SOTA methods**.
- Carried out advanced research in **network calibration**, Large Language Models (LLMs), Video analysis, self-supervised learning, and semi-supervised learning, resulting in publication at CVPR.
- Developed course materials for several graduate-level modules including **Randomised Algorithms** and **Advanced Algorithms**.

Machine Learning Engineer

 $PromiseQ \ GmbH$

- Enhanced the accuracy and reliability of a **deep learning-based CCTV surveillance system** designed to detect activities in real-time by integrating **SOTA algorithms** for object detection and anomaly recognition.
- Achieved a 5% reduction in false alarms, improving overall system performance and trustworthiness, through network calibration techniques.

Full-Stack Software Engineer

Xeptagon (Pvt) Ltd

- Increased domain acquisition success to over 90% and latency less than 50ms by leading a team in developing a domain drop-catching system using optimized algorithms.
- Extracted audio features for a **student learning management system**, enabling the identification of environmental factors affecting learning.

Software Engineer (Intern)

Synergen Technology Labs (Pvt) Ltd

- Designed a wearable device to acquire **physiological signals** and developed algorithms to compute **numerical stress values**.
- Trained a machine learning model to classify stress into relaxed, cognitive stress, physical stress, and emotional stress, obtaining over 90% stress categorisation accuracy.

PUBLICATIONS

- Malitha Gunawardhana^{*}, Shihab Aaqil Ahamed^{*}, Liel David, Michael Sidorov, Daniel Harari, Muhammad Haris Khan "CrossVideoMAE: Self-Supervised Image-Video Representation Learning with Masked Autoencoders" Arxiv-2025 *equal contribution
- Malitha Gunawardhana, Fangqiang Xu, Jichao Zhao "How good nnU-Net for Segmenting Cardiac MRI: A Comprehensive Evaluation" Journal Under Review 2024
- Malitha Gunawardhana, Fangqiang Xu, Yun Gu, Jichao Zhao "ResNet-based Convolutional Framework for Segmenting Left Atrial Scars and Cavities" in STACOM-MICCAI 2024
- Malitha Gunawardhana^{*}, Ishan Dave^{*}, Limalka Sadith, Honglu Zhou, Liel David, Daniel Harari, Mubarak Shah, Muhammad Haris Khan, "Unifying Video Self-Supervised Learning across Families of Tasks: A Survey" Journal -Under Review 2024. *equal contribution
- Malitha Gunawardhana, Limalka Sadith, Liel David, Daniel Harai, Muhammad Haris Khan, "How Effective are Self-Supervised Models for Contact Identification in Videos" in International Workshop on Deep Learning for Human Activity Recognition-IJCAI 2024
- Chamuditha Jayanga Galappaththige, Sanoojan Baliah, **Malitha Gunawardhana**, Muhammad Haris Khan, *"Towards Generalizing to Unseen Domains with Few Labels"* in CVPR 2024
- Kumaranage Ravindu Yasas Nagasinghe, Honglu Zhou, **Malitha Gunawardhana**, Martin Renqiang Min, Daniel Harari, Muhammad Haris Khan, "Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos" in CVPR 2024
- Bimsara Pathiraja, **Malitha Gunawardhana**, Muhammad Haris Khan, "Multiclass Confidence and Localization Calibration for Object Detection" in CVPR 2023
- Malitha Gunawardhana, Chathuki Navanjana, Dinithi Fernando, Nipuna Upeksha, Anjula de Silva, "Evaluation of Noise Reduction Methods for Sentence Recognition by Sinhala Speaking Listeners" in ICIIS 2023

Projects

AI-powered analysis to aid fibrosis-targeted therapy for atrial fibrillation | Python Dec. 2023 – Present

- Designing and implementing a novel **deep learning architecture** for segmenting left atrial cavities and scars from LGE-MRIs with more than **90%** accuracy, enhancing the precision of atrial fibrillation therapies.
- Integrating the developed segmentation model into **clinical workflows**, validating catheter ablation areas to improve therapeutic outcomes in atrial fibrillation treatment.
- Implementing an innovative machine learning network for ECG signals classification, advancing **diagnostic accuracy** and patient care.

lentification of

March 2021 – May 2022 Colombo, Sri Lanka

June 2019 – Dec. 2019 Colombo, Sri Lanka

• Reduced false identifications by developing algorithms to differentiate between natural and ultrasound images , enhancing overall diagnostic reliability.		
 Spontaneous acquisition of infant-level perceptual understanding Python Sep. 2022 – Sep. 2023 Developed unsupervised computational models to enable AI systems to acquire infant-level perceptual understanding from realistic data. Enhanced visual representation learning by implementing self-supervised AI systems which achieve SOTA performance. Evaluated self-supervised learning models on various datasets to analyze their performance on human contact and non-contact interactions. 		
 Developing Machine Learning Applications for CCTV Systems Python June 2022 – Nov. 2022 Enhanced CCTV surveillance systems by implementing SOTA algorithms to improve detection of unauthorized access and suspicious activities, ensuring robust and accurate performance. Achieved a 5% reduction in false alarms and improved reliability through network calibration techniques, resulting in more accurate alerts, reduced operational disruptions, and increased user trust in the system. Authored deployment guidelines for the improved AI-powered surveillance system, ensuring seamless integration and effective utilization. 		
 Dropcatching System Python, TypeScript, JavaScript, GoLang March 2021 – May 2022 Achieved over 90% success rate by developing a SOTA domain drop catcher for a European registrar. Implemented AI-driven domain drop time prediction methods, delivering create commands with less than 50ms latency. Optimized algorithms for superior real-time performance, outperforming existing solutions. 		
 A wearable device for human stress detection Python, MATLAB June 2019 – Dec. 2019 Quantified stress levels into a numerical format by engineering algorithms to process physiological signals. Developed a proprietary dataset using stress induction tests with over 15 participants. 		

• Achieved SOTA results in tumor detection, classification, and segmentation by incorporating multi-modal

• Trained a machine learning model to classify stress into categories: relaxation, cognitive, physical, and emotional stress with more than 90% accuracy.

TECHNICAL SKILLS

Domains: Deep Learning, Computer Vision, Large Language Models (LLMs), Video Analysis, Medical Imaging, Signal Processing

Languages: Python, GoLang, MATLAB, JavaScript, HTML/CSS Developer Tools: Git, Google Cloud Platform, VS Code, PyCharm Libraries: PyTorch, Tensorflow, Keras, Scikit learn Other: Linux, Latex, MS Office

PROFESSIONAL ACTIVITIES

Peer Reviewer: CVPR, ICCV, WACV, IEEE TIP **Research and Community talks:**

IEEE EMBS Student Branch Chapter- UoM (Jan. 2023): Utilising AI in healthcare projects.
IEEE Young Professional Sri Lanka (Dec. 2022): Applications of AI in Healthcare

SERVICE AND LEADERSHIP

University of AucklandMember of the student council, snow sports club and tramping club	2023 – Present
 IEEE Engineering in Medicine and Biology Student Branch Chapter at UoM An advisor and paper reviewer for the ISC 2021 Moratuwa — IEEE EMBS Conference 2021. Council Member – 2020-21. 	2020 - 2021
 Rotaract Club of UoM and Rotaract Club of Alumni of UoM Vice President - Club Service (2022-2023) Club Service Director (2021-2022) Spirit of Service Award 2017,2018 and 2020 	2016 – present

A support system for breast cancer lesion diagnosing | Python • Boosted diagnostic precision in breast cancer detection by integrating texture imaging techniques with

cutting-edge machine learning algorithms.

imaging data.

Sep. 2022 – Jan. 2025